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Abstract

Attraction models are very popular in marketing research for studying the e�ects of

marketing instruments on market shares. However, so far the marketing literature only

considers attraction models with certain functional forms that exclude threshold or satu-

ration e�ects on attraction values. We can achieve greater exibility by using the neural

net based approach introduced here. This approach assesses brands' attraction values by

means of a perceptron with one hidden layer. The approach uses log-ratio transformed

market shares as dependent variables. Stochastic gradient descent followed by a quasi-

Newton method estimates parameters. For store-level data, neural net models perform

better and imply a price response that is qualitatively di�erent from the well-known

multinomial logit attraction model. Price elasticities of neural net attraction models also

lead to speci�c managerial implications in terms of optimal prices.

1 Introduction

Marketing activities that change a brand's sales may a�ect both sales volume (i.e., total

sales of all brands considered) and market shares of the brand's competitors. For example,

a price decrease of a brand might increase sales volume and also decrease market shares

of competing brands. Therefore, a complete understanding of the e�ects of marketing

activities requires that the researcher distinguishes e�ects on sales volume and e�ects on

market shares1.

Attraction models are very popular in marketing research for studying the e�ects of

marketing instruments on market shares. Attraction models are derived from the Market

Share Theorem of Bell et al. (1975) which starts from the following assumptions:

� Each brand has an attraction.

� Attractions are non-negative and their sum is greater than zero.

� A brand with an attraction equal to zero has a market share equal to zero.

� Brands with equal attractions have equal market shares.

� The market share of a brand is a�ected in the same manner if the attraction of any

other brand changes by a �xed amount.

The last assumption means that if there is a change in the attraction level of any

competitor the new market share of a brand does not depend on which competitor

made this change.

The theorem says that the market share MSit of brand i is the ratio of this brand's

attraction Ait to the sum of attractions Ajt; j = 1; J; t = 1; T of all J brands (including

brand i) constituting a market (t denotes the observation period):

MSit = f(Ait; sum) =
AitP
j Ajt

(1)

1For a more detailed discussion see, for example, Hanssens et al. (1990).
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Attraction models are logically consistent2 in the sense that they satisfy the sum constraintPJ
j=1MSjt = 1 and range constraints 0 �MSjt � 1 for all j and t.

As alternative to attraction models, the researcher could estimate sales by means of brand

speci�c sales response functions and compute estimated market shares on the basis of these

sales values. But this approach does not lead to a complete understanding of sales e�ects,

because it confounds sales volume e�ects and market share e�ects.

This paper deals with di�erential e�ects attraction models which are characterized by two

properties:

1. Coe�cients for all predictors are brand-speci�c (i.e. not the same across brands).

2. Only a brand's own marketing instruments inuence its attraction value. Marketing

instruments of other brands have no e�ect on a brand's attraction value.

The marketing literature hitherto only considers attraction models with certain functional

forms3. I introduce a more exible neural net based approach that preserves logically

consistency.

One can �nd some examples for estimating aggregate market share response functions by

using arti�cal neural nets (i.e. multilayer perceptrons) and applying some variant of back-

propagation4. The neural nets used in these contributions ignore the logical consistency

issue mentioned above, especially the sum constraint. They are nonlinear nonparametric

regression models that do without attraction values intervening between predictors and

market shares. Among these papers only the one of Gaul et al. (1994) compares neu-

ral nets of this type to attraction models. In their study, Gaul et al. show that neural

net models perform better in terms of relative absolute errors, but di�erences of model

complexity are not considered5.

Section 2 discusses the arti�cial neural net attraction model. Section 3 deals with esti-

mation and model evaluation methods. Section 4 contains estimation results (i.e. model

performance, price e�ects) of an empirical study using store-level data. The �nal section

emphasizes managerial implications (i.e., price elasticities and optimal prices) which I

obtained for the di�erent models.

2e.g. Naert/Bultez (1973); McGuire et al. (1977).
3e.g. Nakanishi/Cooper (1974); Naert/Bultez (1973); Bultez/Naert (1975); McGuire et al. (1977);

Leeang/Reuyl (1984); Cooper/Nakanishi (1988); Abeele et al. (1990); Cooper (1993); Chen et al. (1994);

Houston et al. (1994).
4e.g. van Wezel/Baets (1995);Wierenga/Kluytmans (1996); Gaul et al. (1994); Natter/Hruschka (1998).
5For one of the product groups analyzed the number of parameters of the neural net is 6 times the

number of parameters of the attraction model.
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2 Arti�cial Neural Net Attraction Model

According to the well-known di�erential e�ects multinomial logit attraction model6 with

xpit as brand's i p-th predictor (p = 1; P ) in period t and normally distributed errors �it
having zero mean and constant variance a brand's attraction is:

Ait = exp(
X
p

apixpit + �it) (2)

It seems obvious that a brand's attraction may be subject to threshold e�ects (e.g. the

attraction changes only after a marketing instrument is above or below a certain value) or

saturation e�ects (e.g. the attraction does not change if a marketing instrument is above

a certain value). These e�ects are shown by some cognitive studies on price response7.

In their experimental study, Gupta/Cooper (1992) found both threshold and saturation

e�ects. Of course, these e�ects cannot be reproduced by the multinomial logit attraction

model, because this model assumes that attraction is an exponential function of linearly

combined predictors.

Therefore, we generalize the multinomial logit attraction model to an appropriate arti-

�cial neural net. This arti�cial neural net is guaranteed to approximate any continuous

multivariate function with desired precision given a su�cient number of hidden units8.

Thus, the arti�cial neural net attraction model can uncover threshold or saturation e�ects

on attraction values. Algebraically, the �rst part of the neural net corresponds to the ex-

ponential attraction of a multinomial logit attraction model, the second part constitutes

the exible extension:

Ait = exp(
X
p

apixpit +
KiX
k=1

bkihkit + �it) (3)

The second part of an attraction equals a multilayer perceptron (which is the most

widespread type of arti�cial neural net) with one layer of Ki hidden units having values

hkit. Hidden units are brand-speci�c, Ki symbolizes the number of hidden units of brand

i. Values of hidden units are computed by plugging a linear combination of brand-speci�c

predictors into the binomial logistic function h():

hkit = h(�
X
p

cpkixpit) = 1=(1 + exp(�
X
p

cpkixpit)) (4)

Please note that the conventional multinomial logit attraction model is just a special

case of the neural net which we obtain if no hidden units are speci�ed (i.e. Ki = 0 for

all brands). Therefore, this approach allows to decide on the usefuleness of the arti�cial

neural net generalization compared to a conventional multinomial logit attraction model.

6e.g. Cooper (1993).
7e.g. Monroe (1973).
8e.g. Cybenko (1989); Hornik et al. (1989); Ripley (1993).
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3 Model Estimation and Evaluation

Models are estimated by minimizing the error sum of squares E of log ratios9 of market

shares:

E =
1

2

X
t

X
i>1

(Yit � Ŷit)
2 (5)

Ŷit for i = 2; � � � ; I symbolizes the estimated log ratio of brand i in period t.

Because of its linear form, parameters of the multinomial logit attraction model are esti-

mated by ordinary least squares. Estimation of neural net models consists of two stages10,

stochastic gradient descent and the quasi-Newton optimization procedure BFGS of Broy-

den, Fletcher, Goldfarb, Shanno11.

Besides the conventional multinomial logit attraction model I estimate the following 46

neural net models:

� models with zero or one hidden unit per brand and at least one brand speci�c hidden

unit;

� models with one or two hidden units per brand and at least two brand speci�c

hidden units;

� models with two or three hidden units per brand and at least three brand speci�c

hidden units;

� the model with four hidden units for each of the brands.

Instead of selecting a single model, I evaluate all estimated arti�cial neural net models

by (approximate) posterior probabilities12. This way, I account for the uncertainty in-

volved in model selection. I then average results over models according to their posterior

probabilities13.

4 Empirical Study

The empirical study analyzes store-level data of four brands (A, B, C, D) of a certain

category of consumer non-durables. The data base consists of 104 weekly observations per

brand on market shares, current retail prices and features (binary).

The neural net model with one hidden unit for each of the brands A and B, but no

hidden unit for either Brand C or D attains an approximate probability of 0.99998. It

dominates the remaining 45 neural net models, most of which have posterior probabilities

9Appendix A explains the log ratio transformation of market shares.
10Details are given in Appendix B.
11e.g. Seber/Wild (1989); Bishop (1995).
12See Appendix C.
13e.g. Carlin/Louis (1996).
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less than 10�5 [see tables 1 and 2]. Please note that the number of parameters increases by

a factor of 2=3 in relation to the conventional logit model. This is rather modest compared

to the neural net models estimated by Gaul et al. (1994). Because of negligible posterior

probabilities for models with at least two hidden units per brand, I do not estimate neural

net models with at least three hidden units per brand except for the model having four

hidden units for each of the brands.

===========================

put tables 1 and 2 about here

===========================

Figure 1 shows a path diagram that depicts the relations between predictors, hidden

units, attraction values, and market shares for the dominant model. Both the condition

number14 of the Hessian15, which amounts to 14.11, and the minimal absolute t-value of

12.10 over all parameters suggest that we can rule out multicollinearity or ill-conditioning

for this model.

===========================

put �gure 1 about here

===========================

Figure 2 contains plots of market shares for both the multinomial logit and the neural net

models for each of the four brands versus its own price (given average prices of the other

three brands, respectively). The plotted market shares for the arti�cial neural net models

are weighted averages across all 46 models according to their posterior probabilities.

For brand A, the neural net models indicate a weaker marginal price response than the

multinomial logit model except at very low prices. For brand B, neural net models imply a

weaker marginal reponse, and only at very high prices marginal e�ects greater than those

for the multinomial logit model. Obviously, the prices of brands A and B are subject to

threshold e�ects (market share changes become more pronounced only if prices are below

or above a certain level). This explains why neural net models perform much better than

the multinomial logit model which is unable to reproduce such e�ects.

===========================

put �gure 2 about here

===========================

For brands C and D, marginal e�ects do not di�er between the multinomial logit and

the neural net models. This result is not surprising, because the dominant neural net

model possesses no hidden units for these two brands and in this respect is similar to the

multinomial logit model.

14e.g. Belsley et al. (1980).
15Its computation based on a linear approximation in the neighborhood of the estimated parameter

values can be found in Seber/Wild (1989).
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5 Managerial Implications

I determine (cross-) elasticities for the models studied. From equation 1 I obtain as �rst

derivative w.r.t. to predictor xpjt:

@MSit

@xpjt
=MSit(�ij �MSjt)

@Yjt

@xpjt
(6)

�ij denotes Kronecker's delta which is equal to one for brand's i predictors (j = i), equal

to zero for another brand's predictors (j 6= i).

We get the same derivatives for predictors of the reference brand @Yjt=@xp1t =

�@ log(A1t)=@xp1t for j = 2; � � � ; J .

Using expression 6 market share (cross-) elasticities elit of brand i in period t w.r.t.

predictor xpjt can be written:

elijt = (�ij �MSjt)xpjt
@Yjt

@xpjt
(7)

As they are in the multinomial logit attraction model, the cross-elasticities for all brands

j 6= i are equal.

Substituting for @log(Ajt)=@xpjt the expression for the neural net's (cross-) elasticities is:

elijt = (�ij �MSj)xpjt(apj +

KjX
k=1

bkjcpkjhkjt(1� hkjt)) (8)

It subsumes the well-known equation for the multinomial logit attraction model16 as a

special case:

elijt = (�ij �MSj)xpjtapj (9)

Table 3 contains elasticities and cross-elasticities for the average price of each brand. The

prices of the other brands are also set to average values (e.g., the price elasticity for

brand A is computed at the average price of 42.18 and the prices of the other brands

B, C and D are set to 36.22, 35.14 and 40.10, respectively). The elasticities and cross-

elasticities for arti�cial neural nets are model averages (i.e. elasticities of the individual

46 models weighted by their posterior probabilities). Contrary to the multinomial logit

attraction model, the neural net models indicate lower absolute values for both elasticities

and cross-elasticities17.

===========================

put table 3 about here

===========================
16e.g. Cooper/Nakanishi (1988); Cooper (1993).
17These results are not due to systematic changes of prices over time. Time-dependent regression models

with di�erent functional forms (linear, quadratic, exponential, double log and semi log) explain maximally

14.76 %, 2.08 %, 7.04 % and 5.92 % of the variance in prices for each of the four brands, respectively.

6



For our data set the multinomial logit model misleads a brand manager into overestimat-

ing the e�ect of her/his own price changes as well as those of competitors, on market

share. To give more insight into managerial implications, I determine optimal prices. To

this end, I assume constant marginal costs that are equal for all brands. Because of estima-

tion results for several parametric and non-parametric models, sales volume is determined

by a multiplicative function of the average price of the product category (across the four

brands studied) in each week. As solution concept that deals with competitive behavior,

I use �ctitious play, which assumes that competitors set prices following the frequency

distributions observed in the past18.

===========================

put table 4 about here

===========================

Table 4 contains optimal prices and pro�ts based both on the MNL model and the neural

net models (optimal prices for neural net models maximize average pro�ts weighted by

models' posterior probabilities), model averaged pro�ts if optimal prices of the MNL

model are chosen and pro�t increases by setting prices in accordance with neural net

models. Prices recommended on the basis of neural net models are higher. This is to be

expected, since the estimated neural net models imply lower elasticities, as shown above.

These di�erences have important practical implications for brands A and B, for which the

dominant neural net model has one hidden unit and therefore di�ers from a conventional

multinomial logit model, but negligible for brands C and D, the brands without hidden

units. On the basis of neural net models the pro�t increases we can expect for brands A

and B amount to 10.70 % and 15.61 %, respectively.

Conclusions

The empirical study based on store-level data demonstrates that the proposed neural net

models perform better in terms of posterior probability. Neural net models imply a price

response qualitatively di�erent from the well-known multinomial logit attraction model.

Price elasticities also di�er from those for the multinomial logit model. Moreover, neural

net models lead to speci�c managerial implications in terms of optimal prices and pro�ts.

Like the multinomial logit model, the neural net models studied in this paper are subject to

the IIA property, i.e. they assume that from the viewpoint of any brand all its competitors

are equally substitutable (in terms of cross-elasticities). Therefore, an interesting topic of

future work might be extensions of these models allowing marketing instruments of other

brands to inuence any brand's attraction value.

18e.g. Brown (1951).
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Appendix A: Log Ratio Transformation of Market Shares

Estimation of attraction models is simpli�ed by applying the so-called log ratio transfor-

mation19 which is equivalent to the well-known log-centering transformation developed

by Nakanishi (1972) as well as Cooper/Nakanishi (1974).

Taking the log of equation 1 gives:

log(MSit) = log(Ait)� log(
JX

j=1

Ajt) (10)

Without loss of generality I take brand 1 as reference and subtract log(MS1t) from equa-

tion 10. This leads to:

Yit � log(MSit)� log(MS1t) = log(Ait)� log(A1t) (11)

Yit, the log ratio of market share of brand i in period t, serves as dependent variable in

our regression models. Forming the antilog of Yit results in:

exp(Yit) =
Ait

A1t

(12)

Dividing both numerator and denominator of equation 1 by A1t and substituting shows

how to compute market shares on the basis of log ratios Yit:

MSit =
Ait=A1t

1 +
P

j>1Ajt=A1t

=
exp(Yit)

1 +
P

j>1 exp(Yjt)
(13)

For the reference brand this expression simpli�es to:

MS1t =
1

1 +
P

j>1 exp(Yjt)
(14)

The estimated log ratio for the conventional multinomial logit attraction is:

Ŷit = log(Ait)� log(A1t) =
X
p

apixpit �
X
p

ap1xp1t (15)

Because expression 15 is linear, I estimate parameters of the multinomial logit attraction

model by ordinary least squares.

The estimated log ratio for the neural net model can be written as:

Ŷit = log(Ait)� log(A1t)

=
X
p

apixpit �
X
p

ap1xp1t +
KiX
k=1

bkihkit �

K1X
l=1

bl1hl1t (16)

19e.g. McGuire et al. (1977), Houston et al. (1994).
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Appendix B: Gradients and Stochastic Gradient Descent

The Gradients of the parameters needed both for stochastic gradient descent and BFGS

are:

@Ŷit

@apj
=

8><
>:

�xp1t : j = 1

xpit : j = i

0 : else

(17)

@Ŷit

@bkj
=

8><
>:

�hk1t : j = 1

hkit : j = i

0 : else

(18)

@Ŷit

@cpkj
=

8><
>:

�bk1hk1t(1� hk1t)xp1t : j = 1

bkihkit(1� hkit)xpit : j = i

0 : else

(19)

Stochasting gradient descent changes each parameter w by an amount proportional to the

gradient of E for a randomly chosen observation20:

�w = ��
@E

@w
= ��(Yit � Ŷit)

@Ŷit

@w
(20)

Random selection from observations Yit allows wider exploration of the parameter space.

Stochastic gradient descent stops if no percentual improvement of E greater than 0:01 is

found for each of the last T � (I � 1) selected observed log ratios Yit. I set the learning

constant � to 0:5 and for each of the various models (distinguished by the number of

hidden units) perform 100 runs of stochastic gradient descent, using di�erent normally

distributed initial parameter values with zero means and standard deviations equal to 0:3.

My implementation of BFGS calculates descent directions following a proposal of Saito/

Nakano (1997). We consider two alternative starting values of model parameters:

� the best parameter set among the stochastic gradient runs mentioned above in terms

of E;

� the parameter values estimated for the best arti�cial neural net model in terms of

E with fewer hidden units than the model considered together with zero values for

parameters connected with the additional hidden units.

This way, BFGS as a rule provides two di�erent parameter vectors from which I �nally

choose the vector associated with the smaller E value.

20e.g. Hertz et al. (1991); Ripley (1996).
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Appendix C: Approximate Posterior Probabilities of Models

The change of the Bayesian Information Criterion21 �BIC(m) caused by the m-th neural

net model replacing the conventional multinomial logit attraction model is:

�BIC(m) = N (ln(Em)� ln(E0))� ln(N) (p0 � pm) (21)

N denotes the number of observations E0; Em are the error sum of squares, p0; pm the

number of parameters for the multinomial logit model and the m-th arti�cial neural net

model, respectively.

The Bayes factor B(m), i.e. the ratio of the posterior odds of the m-th arti�cial neural

net model to the multinomial logit model, can be approximated by means of �BIC(m)

as follows:

B(m) � exp(�
1

2
�BIC(m)) (22)

Because each Bayes factor B(m
0

) is proportional to the posterior probability p(m
0

) of the

respective model m
0

, posterior probabilities of models can be computed by:

p(m
0

) =
B(m

0

)P
mB(m)

for m
0

= 1;m (23)

21e.g. Schwarz (1978).
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Table 1: Model Evaluation

Number of Error Sum Posterior

Hidden Units of Squares Probability

per Brand E p(m)

A B C D

0 0 0 0 3.396

0 or 1 hidden unit per brand

at least one brand with 1 hidden unit

1 0 0 0 3.167 < 0.00001

0 1 0 0 2.861 < 0.00001

0 0 1 0 3.396 < 0.00001

0 0 0 1 3.396 < 0.00001

1 1 0 0 2.430 0.99998

1 0 1 0 3.078 < 0.00001

1 0 0 1 3.034 < 0.00001

0 1 1 0 2.763 < 0.00001

0 1 0 1 2.861 < 0.00001

0 0 1 1 3.396 < 0.00001

1 1 1 0 2.430 0.00001

1 1 0 1 2.430 0.00001

1 0 1 1 3.176 < 0.00001

0 1 1 1 2.671 < 0.00001

1 1 1 1 2.430 < 0.00001

1 or 2 hidden units per brand

at least one brand with 2 hidden units

1 1 1 2 2.430 < 0.00001

1 1 2 1 2.324 < 0.00001

1 1 2 2 2.239 < 0.00001

1 2 1 1 2.391 < 0.00001

1 2 1 2 2.391 < 0.00001

1 2 2 1 2.239 < 0.00001

1 2 2 2 2.239 < 0.00001

2 1 1 1 2.266 < 0.00001

2 1 1 2 2.266 < 0.00001

2 1 2 1 2.266 < 0.00001

2 1 2 2 2.266 < 0.00001

2 2 1 1 2.266 < 0.00001

2 2 1 2 2.266 < 0.00001

2 2 2 1 2.200 < 0.00001

2 2 2 2 2.200 < 0.00001



Table 2: Model Evaluation (Continued)

Number of Error Sum Posterior

Hidden Units of Squares Probability

per Brand E p(m)

A B C D

2 or 3 hidden units per brand

at least one brand with 3 hidden units

2 2 2 3 2.200 < 0.00001

2 2 3 2 2.200 < 0.00001

2 2 3 3 2.200 < 0.00001

2 3 2 2 2.200 < 0.00001

2 3 2 3 2.194 < 0.00001

2 3 3 2 2.200 < 0.00001

2 3 3 3 2.194 < 0.00001

3 2 2 2 2.200 < 0.00001

3 2 2 3 2.200 < 0.00001

3 2 3 2 2.200 < 0.00001

3 2 3 3 2.200 < 0.00001

3 3 2 2 2.200 < 0.00001

3 3 2 3 2.194 < 0.00001

3 3 3 2 2.141 < 0.00001

3 3 3 3 2.141 < 0.00001

4 4 4 4 2.141 < 0.00001
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Table 3: Elasticities at Average Prices

Average Own Cross-

Brand Price Elasticity Elasticity

A 42.18 -3.83 1.19

-0.99 0.35

B 36.22 -3.48 1.26

-1.09 0.32

C 35.14 -1.29 0.35

-1.09 0.29

D 40.10 -3.07 1.22

-2.79 1.19

�rst line multinomial logit results, second line average over ANNAM models



Table 4: Optimal Solutions for Fictitious Play

MNL Model ANNAM Models

Optimal Pro�t Optimal Pro�t

Price Pro�t according Price Pro�t Increase (%)

to ANNAM models

37 2993.56 2580.16 42 2856.35 10.70

36 1407.89 1287.95 41 1489.03 15.61

40 1061.05 1351.93 41 1360.22 0.61

37 2559.51 3103.09 38 3116.41 0.43



h

exp

 C        P          F
Brand A

h

exp exp exp

  C          P          F                 C          P          F                   C          P          F

                         Brand B                                Brand  C                                Brand D

f f ff

sum

C: Brand Constant, P: Price, F: Feature

Figure 1: Path Diagram of ANNAM with one hidden unit for Brand A and Brand B
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Figure 2: Market Share vs. Price (MNL and ANNAM models)


